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Abstract— Grouping chickens based on their weights 

is an important process that takes place in many chicken 

farms in New Zealand where chickens are grouped into 

three categories: small, medium and large. Each category 

has pins (cages) to temporarily hold the chickens during 

the process and a permeant bigger section to hold the 

chickens after grouping.  Chickens are weighed and placed 

in respective pins. Thereafter they are released to the 

permanent section. Currently, the chickens are counted 

manually when they are released from a pin to a bigger 

section. The task of weighing chickens, placing them in a 

pin and releasing them to a bigger section is repeated until 

all chickens are moved to their respective bigger section 

and the total number of chickens in each section is 

calculated. This manual effort is done by several 

employees and takes several hours. This study investigated 

the feasibility of using deep learning algorithms to replace 

the manual counting. We applied the localized fully 

convolutional network (LCFCN) algorithm to count and 

locate chickens from images of the pins. LCFCN was 

applied to a dataset of 4092 images containing 114132 

chickens. The algorithm was evaluated using the Mean 

Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE) and Root Mean Square Error (RMSE) metrics 

and achieved the values of 0.5592, 1.36% and 1.67 

respectively which are promising results in this setting. 

Furthermore, we modified the implementation of LCFCN 

to enable a user to manually alter the predicted labels to 

guarantee error free counting and localization.  

Keywords—deep learning, LCFCN, convolutional neural 

networks, object counting, point-level annotation, image 

processing 

I. INTRODUCTION 

Recent advancements in computation power, graphic 
processing unit, artificial intelligent and neural networks led 
to the development of several efficient algorithms and 
architectures. Deep learning architectures got the attention 
of many academic researchers and industry experts who 
steered the development of several algorithms and platforms 
[1]. 

Computer vision is an important subject and has 
numerous numbers of real-life applications. Deep learning 
architecture advanced this field and presented several new 
algorithms including image classification, colorization, 
object recognition and object counting [2]. This paper 
focuses on object counting which has many real-life 
applications such as crop assessments, animal counting, 
underwater fish counting and tree counting [3]. 

Labelling objects for training is a major task and 
requires massive human effort. In many cases, labelling one 
object using bounding box or semantic segmentation 
techniques can take several seconds and this is a challenge 
for large datasets or when images contain a large number of 
objects. The task of simple counting may not necessitate this 
type of elaborative labelling. Subsequently, the concept of 
weak supervision, dotting or point-level labelling 
(annotation) has been introduced [3]. 

Point-level annotation requires only one click for each 
object (which result in marking one pixel). Obviously, this 
technique is significantly quicker than other labelling 
techniques and the level of human effort and expertise for 
labelling is dramatically reduced. This type of labelling 
proved to be effective for object counting and the associated 
algorithms are competitive or outperform the state-of-the-
art algorithms for strong supervision such as bounding 
boxes [4], [5]. 

LeCun et al. introduced Convolutional neural networks 
(CNN) [6]. This architecture is a type of deep learning 
architecture which has a kernel that filters the data to capture 
spatial and temporal dependencies. In recent years, 
extensive experiments showed a clear superiority of this 
architecture in many applications, mainly image processing 
[7].  

Fully convolutional network (FCN) is a CNN without 
the dense layers which means it only contains convolutional 
layers [8]. The absence of dense layers makes the network 
efficient and able to handle inputs with different sizes. 

Laradji et. al. [4] introduced a new approach for object 
counting which doesn’t consider the sizes and shapes of 
objects and only requires point-level annotation. This 
interesting approach outperforms many state-of-the-art 
algorithms that uses stronger labelling such as depth 
features, multi-points and bounding box labelling in many 
settings. They introduced a new novel loss function which 
leads the neural network to output a single blob per object. 
The loss function is denoted as localization-based counting 
loss (LC). This technique is based on fully convolutional 
neural network (FCN) and, subsequently, the new approach 
is referred to as LC-FCN or LCFCN. 

For chicken farmers, grouping chickens is a complex 
and expensive process. Currently it requires human effort 
for weighing and counting. This study showed the 
feasibility of automating the counting task using LCFCN 
algorithm. This proof of concept has the potential to reduce 
human effort and improve the accuracies for many chicken 
farms in New Zealand and worldwide. The experiments of 
LCFCN produced perfect counting for 72% of the images 
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and the number of errors in the remaining images is 
minimal.  Furthermore, we modified the implementation of 
LCFCN to enable a user to alter the predicted results of the 
algorithm to guarantee error free counting.  

The manuscript is organized as follow: Section II 
presents the literature review. Section III describes the 
methodology which includes metrics for evaluation, dataset 
and settings. Section IV reports the results and discusses the 
factors that influence the algorithm. Section V provides 
conclusion and future work. 

II. RELATED WORK 

As stated in the introduction, object counting in 
computer vision has many real-life applications. Most of 
recent algorithms are based on point-level annotation and 
CNN. This section augments the introduction and highlights 
relevant and recent publications.   

Zhang et. al. [9] introduced a method for crowd counting 
on metro platforms based on CNN architecture. This 
method was applied to a dataset of 627 images which 
contains 9243 annotated heads. 

Saleh et. al. [10] built large scale datasets for underwater 
fish-habitat where state-of-the-art deep learning algorithms 
were trained and tested. It was shown that these algorithms 
are effective and has the potential to produce satisfactory 
results when counting the number of fish from images and 
other classification tasks. They also showed the impact of 
pretraining on ImageNet to the performance of these 
algorithms. The experiments used point-level and per-pixel 
annotations.  

Laradji et. al. [11] applied two deep learning algorithms 
to count the number of cows from satellite images. The two 
algorithms are: CSRNet which is a density-based for 
counting and localization of objects and LCFCN. Both 
methods require point-level labelling. Their experiments 
showed the effectiveness of these two architectures but also 
the need for further investigations. They also stated that the 
resolution of images can be a decisive factor on the 
performance of these algorithms. 

Tian et. al. [12]  used a combination of counting 
convolutional neural network and ResNeXt architecture to 
count the number of pigs in an image and achieved 1.67 
Mean Absolute Error per image. They stated that this result 
is better than competing algorithms. 

Cheang et. al. [13] used convolutional neural network to 
count palm trees from satellite images with resolution range 
from 40cm per pixel to 1.5 meter per pixel. The network was 
trained with 500 images where each image was cropped to 
40 pixels X 40 pixels. Their experiments showed above 99% 
accuracy.  

Santos de Arruda et al. [14] used CNN architecture to 
count and locate high density objects. They applied their 
implementation to a car and tree counting datasets. They 
used mean absolute error and root-mean-squared error to 
evaluate the performance of their implementation. Their 
implementation showed superior results compared to that of 
the state-of-the-art algorithms. 

Saleh et. al. [15] proposed a segmentation model which 
is based on point-level supervision to estimate fish body 
measurements (length, width and mass). They used a fully 

CNN with one random walk to get per-pixel segmentation. 
The model used LCFCN loss function. Their experiments 
showed that this model outperforms fully supervised state-
of-the-art algorithms in many settings. 

Robinson et. al.  [16] applied the LCFCN algorithm to 
count and detect cows and elks from a very high-resolution 
satellite imagery. Using precision and recalls metrics, they 
reported that LCFCN outperformed other competitive 
counting algorithms and in three tests scenes.   

 

III. METHODOLOGY AND DATASET 

A. Metrics for Evaluation 

The literature includes several metrics to evaluate 
counting algorithms. Consider the set � =  ���, … , �	
�� of 
images which is used for testing. The absolute error for an 
image �
  is defined as  |�
 − �
| , where �
  is the total 
number of objected marked (predicted) by the algorithm and �
 is the total number of objects marked by the ground truth. 
The mean average error (MAE) measurement [17] is 
defined as in equation 1. 

�
	 ∑ |�
 − �
|	
�
��       (1) 

This measure is oblivious to object locations. Suppose 
the algorithm marks a location that doesn’t correspond to an 
object and fails to mark an existing object. In this scenario, 
these two errors cancel each other, and the errors will not be 
factored in this evaluation. Another drawback of this metric 
is the failure to consider the total number of objects in an 
image. Consider a counting algorithm predicts 98 out of 100 
objects in an image and another counting algorithm predicts 
three out of five objects. This metric allocates the same 
score to both algorithms. It is reasonable to assume that the 
first algorithm produced better results than the second 
algorithm.  

The Grid Average Mean Absolute Error (GAME) 
measurement aims to tackle the drawback of localization in 
MAE [17]. The grid (image) is split into 4� equal and non-
overlapping regions, where , � �� �� ������� ≥ 0  and 
MAE is used to evaluate each region in the image. When 
setting L=0, the definition of GAME is equal to that of 
MAE. If there are many objects crossing different regions, 
this distort the evaluation and increasing the value of L can 
lead to a significant distortion in many scenarios, mainly 
images with a high number of objects. 

MAPE is a variation of MAE that considers the total 
number of objects. It divides the absolute error by the total 
number of objects in an image and average these values over 
all the images in the testing set. Formally, it is calculated as 
in equation 2. 
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RMSE captures the dispersion in the differences 
between the predicted and actual count and it is calculated 
as in equation 3. 
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�
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The experiments in this study reports the values of 
MAE, MAPE and RMSE measures. In addition to these 



measures, the total number of manual alterations to 
guarantee error free counting and localization is considered. 
The total number of manual alterations is an indication of 
the quality of counting and localization. 

B. Building and Labeling the Datset 

The grouping process takes several hours where the total 
number of chickens involved in this process can reach 
several thousands. Since chickens are continually added to 
pins and removed from pins, the total number of chickens in 
any given pin is frequently changing. 

During a real-life grouping in a chicken farm in New 
Zealand - we are unable to disclose the name of the 
organization due to confidentiality - we took 700 images 
using an iPhone device and a digital camera. Images were 
captured from different angles and positions with target pins 
containing different number of chickens. The grouping 
process took place in a closed structure where lighting was 
adjusted for the well-being of the chickens. Subsequently, 
the lighting was low (poor) which affected the quality of 
images and consequently, many had poor quality (blurry) 
resulting in those images being discarded from the dataset. 

In subsequence to poor lighting, another challenge was 
labelling crowded and overlapping objects in an image. 
Dotting (using the labelling tool) the objects is not a 
straightforward task and the quality of labelling is unclear. 
Images with higher resolution can improve the quality of 
labelling and the overall quality of the dataset. 

From the 700 images, 341 images were retained and 
used to form the core of the dataset. These images contained 
pins with different numbers of chickens. The size of each 
image is approximately 4MB where each image covers an 
approximate area of 100cm x 100cm (the area of a pin). 

The images in the core dataset were cropped applying 
commonly used techniques [15] to 1000pixels x 1000pixels 
and stored as PNG format. The dataset was labelled using 
an in-house customised labelling tool. The labelling tool 
displayed the total number of chickens and provided the 
user with the adding and removing label functionalities. A 
user can add a label (dot) that corresponds to a chicken 
(object). The added label is translated to a single pixel where 
the coordinate of the pixel is then added to the mask text 
file. Similarly, the user also can unclick an object which 
results in removing the object (the dot) from the image and 
removing the corresponding coordinate from the mask text 
file. 

For expanding the dataset, we created 12 versions of 
each image. These versions consisted of four rotated images 
(each image was rotated 90 degrees and captured) with each 
rotated image then being mirrored and flipped. 
Subsequently, the total number of images in the dataset is 341*12 = 4092. The total number of chickens (objects) 
was 114132 where the average number in each image was 
approximately 28 chickens. The standard deviation of the 
number of chickens in the dataset is 21.99. 

Fig. 1 illustrates the distribution of the number of 
chickens in the dataset and Fig. 2 presents an example of a 
labelled image using our in-house customized labelling tool. 

C. Experiments and Implementation 

In chicken farms in New Zealand, the grouping process 
has few slightly different setups, but all include pins to 

temporarily hold chickens belonging to a group (category) 
based on weight. The chickens are then released to a 
respective larger and permanent section. The manual 
process of counting occurs when the chickens are moved 
from the pins to the respective bigger sections. The task of 
weighing chickens and putting them into pins and then to 
bigger and permanent sections is repeated until all chicken 
are graded. A pin has the capacity to temporarily hold a 
small number of chickens (less than 200) and a bigger 
section has the capacity to contain several thousands of 
chickens. Our experiments used LCFCN to count the 
number of chickens in images of the pins to replace the 
manual counting. 

The implementation is based on the code of LCFCN 
which is free and publicly available for downloading from 
the GitHub repository [10]. The implementation includes a 
text file (mask) which holds the labels of the chicken 
objects. Considering that all images are cropped to a 
1000pixels x 1000pixles, the text file contains rows of items, 
of which each row is an x and y coordinate of one chicken 
object. Therefore, the total number of rows is equal to the 
total number of chickens. Furthermore, each coordinate 
represents the location of the chicken in the image.  

Our in-house labelling tool accesses the text file and 
draws dots (see Fig. 2) on the images to represent the 
objects. The dots represent the coordinates (locations) of the 
objects in an image. 

Given these technical details, a user can manipulate the 
labelling tool to guarantee free of error counting as the user 
can manually add and remove dots to any image. A user can 
click on any part of an image to add a new dot (object) or 
can click an existing dot to remove it.  By adding dots, the 
location of the dot is translated to adding the respective 
coordinate in the text file. Respectively, clicking an existing 
dot in the image, results in removing the label from the 
image and the coordinate from the text file. In addition to 
this, the labelling tool displays the total number of objects 
(chickens) in the image and updates the dots on the display. 

When applying the LCFCN algorithm, it produces the 
mask (text file) as the predicted labels. This file is used as 
an input to our labelling tool.  A user can manually review 
and adjust the results of LCFCN algorithm. 

The original implementation of LCFCN used Python 
language and was executed under the Linux operating 
system. This was manipulated and executed under the 
Windows operating system with eight cores, 16 GB of RAM 
and a NVIDIA GTX 1060 GPU card. 

The experiments applied the common settings used by 
many researchers. It randomly split the dataset to 70% for 
training, 10% for validation and 20% for testing. The 
number of images in the testing set is 819 containing 23335 
chickens in total. For pretraining, we used the ResNet50 
transfer learning model. 

The experiments were set to run LCFCN for 100 epochs. 
The values of the loss function were reported after each 
epoch. At the end, after the 100 epochs, the values of MAE, 
MAPE and RSME were calculated. In addition to this, a 
manual manipulation is provided to guarantee a free of 
errors counting for the 819 images in the testing set. This 
measure provides an indication of the quality of localization 
of the LCFCN algorithm. 



  

 

 
  Fig. 1: basic information of the dataset. 

 

 
  Fig. 2: an example of labelled image in a pin. 

IV. RESULTS AND DISCUSSIONS 

 
The experiments captured the values of the loss function 

after each epoch, the values of MAE, MAPE and RSME 
after 100 epochs. Furthermore, a manual effort has been 
applied to correct the predicted labels of LCFCN and to 
estimate the human effort to guarantee free of errors 
counting.  

Fig. 3 presents the values of the loss function after each 
epoch. The values after each of the first three epochs are 
approximately 160, 8 and 3. This shows the impact of 
pretraining the network on ResNet50 model. After the first 
three epochs, the value of loss function fluctuates and 
gradually decrease but remained above the value one. 

For MAE and MAPE. The LCFCN algorithm achieved 
0.5592 and 1.36% respectively. The average number of 

chickens in an image in the testing set is 
'---.

/�0 = 28.49. 

LCFCN produced perfect counting for 590 images, over 
counting (predicted labels are more than the ground truth) 
for 168 images and under counting (predicted labels are less 
than the ground truth) for 61 images. The total number of 
chickens in the over counted images is 338 and in the 
undercounted images is 120 (in 61 images). This result 
indicates that LCFCN predicts accurate number of chickens 
for most images and when there is an error, there are 
minimal number of labels to be corrected. Although perfect 
counting may not indicate perfect localization this is an 
encouraging result and it highlights the potential of LCFCN.  

The reported value of RSME is 1.6. This small value 
indicates that LCFCN performs well when the number of 
objects (chickens) in the images is relatively high. There are 
several issues with such images, and this will be further 
discussed in the conclusion and future research section. 



Fig. 4, Fig. 5 and Fig. 6 present examples of the output 
of LCFCN and the required manual alterations to 
manipulate the result to attain free of errors labelling. For 
these figures (a) represents the ground truth and (b) 
represents the predicted labels of LCFCN. The labelling tool 
gathers meta data and present it on the image to facilitate the 
manual alterations. Fig. 4 shows an example where LCFCN 
achieved correct labelling for an image that contain 23 
chickens. In this scenario, no alterations are required. Fig. 5 
shows an example where LCFCN labelled a chicken twice. 
The image contains 45 chickens and the black circle shows 

the wrong labelling of the chicken. The user can remove the 
additional label to align the prediction of LCFCN to the 
ground truth. For this image, one alteration is required to 
achieve perfect labelling. Fig. 6 shows another type of 
wrong labelling by LCFCN where the black circle shows a 
label of LCFCN that has no respective object. The number 
of objects in this image is 30. A user can manually remove 
this label using a single click which means only one 
alteration is required to achieve perfect labelling for this 
image. 

 

 

          Fig. 3: the values of loss function after each epoch. 

 

           
         Fig. 4: the ground truth vs the predicted labels where no alterations are required. 

             
          Fig. 5: LCFCN labelled a chicken twice. 



 
            Fig. 6: LCFCN labelled an empty spot as a chicken. 

 

V. CONCLUSION AND FUTURE RESEARCH 

Point level labelling is a recent and promising technique 
which has many applications. Unfortunately, not many 
datasets are publicly available. We are in the process of 
obtaining more images with higher resolutions and better 
qualities. In addition to this, we are aiming to obtain the 
consent of the organization to make these images with our 
labelling publicly available.   

LCFCN produced excellent counting results for images 
which contain low number of chickens. For crowded images 
where the number of chickens reached 100 and there is a 
high degree of overlapping, LCFCN produced good 
counting results. However, for such images, labelling 
becomes a challenge and the ground truth is unclear. In these 
scenarios, the display is poor to human eyes and it is a 
challenge to establish the ground truth and to evaluate the 
algorithm. To draw a more robust conclusion, it is preferable 
to acquire images with higher resolution that contain a high 
number of chickens. 

Evaluating the quality of localization for this dataset is a 
challenge. The predicted labels of LCFCN for images with 
low numbers are excellent. In such cases no more than one 
alteration is required to manually correct the result of 
LCFCN.  

We are planning to compare the performance of LCFCN 
with CSRNet and ResNext architectures once images with 
higher resolution are available.  
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